The Prolongation Problem for the Heavenly Equation

نویسنده

  • M. Palese
چکیده

We provide an exact regular solution of an operator system arising as the prolongation structure associated with the heavenly equation. This solution is expressed in terms of operator Bessel coefficients. 1991 MSC: 83C20,35A30,58G35,33C10.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inverse Scattering Problem for Vector Fields and the Cauchy Problem for the Heavenly Equation

We solve the inverse scattering problem for multidimensional vector fields and we use this result to construct the formal solution of the Cauchy problem for the second heavenly equation of Plebanski, a scalar nonlinear partial differential equation in four dimensions relevant in General Relativity, which arises from the commutation of multidimensional Hamiltonian vector fields.

متن کامل

On the ∂̄-dressing method applicable to heavenly equation

The ∂̄-dressing scheme based on local nonlinear vector ∂̄-problem is developed. It is applicable to multidimensional nonlinear equations for vector fields, and, after Hamiltonian reduction, to heavenly equation. Hamiltonian reduction is described explicitely in terms of the ∂̄-data. An analogue of Hirota bilinear identity for heavenly equation hierarchy is introduced, τ -function for the hierarchy...

متن کامل

Inverse Scattering Problem for Vector Fields and the Heavenly Equation

We solve the inverse scattering problem for multidimensional vector fields and we use this result to construct the formal solution of the Cauchy problem for the second heavenly equation of Plebanski, a scalar nonlinear partial differential equation in four dimensions relevant in General Relativity, which arises from the commutation of multidimensional Hamiltonian vector fields.

متن کامل

8 On the solutions of the second heavenly and Pavlov equations

We have recently solved the inverse scattering problem for one parameter families of vector fields, and used this result to construct the formal solution of the Cauchy problem for a class of integrable nonlinear partial differential equations connected with the commutation of multidimensional vector fields, like the heavenly equation of Plebanski, the dispersionless Kadomtsev Petviashvili (dKP)...

متن کامل

Mixed heavenly equation and Husain’s equation are integrable bi-Hamiltonian systems

In the recent paper by one of the authors (MBS) and A. A. Malykh on the classification of second-order PDEs with four independent variables that possess partner symmetries [1], mixed heavenly equation and Husain’s equation appear as closely related canonical equations admitting partner symmetries. Here for the mixed heavenly equation and Husain’s equation, formulated in a two-component form, we...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003